

LA-UR-18-24448

Approved for public release; distribution is unlimited.

Title: Probing Dynamic Response to Temperature Changes in Berea Sandstone

using Acoustic Time-of-Flight and Resonant Ultrasound Spectroscopy

Author(s): Davis, Eric Sean

Pantea, Cristian Sturtevant, Blake Sinha, Dipen N.

Intended for: ASA Spring Meeting, 2018-05-07/2018-05-11 (Minneapolis, Minnesota,

United States)

Issued: 2018-05-22

Probing Dynamic Response to Temperature Changes in Berea Sandstone using Acoustic Time-of-Flight and Resonant Ultrasound Spectroscopy

Eric S. Davis^{1,2}, Blake T. Sturtevant², Dipen N. Sinha², Cristian Pantea²

¹Department of Physics University of Houston ²Applied Acoustics Team Materials Physics and Applications Los Alamos National Laboratory

Background

- Current research is focused on the mechanical properties of sandstones in extreme conditions
- Relevant to the oil & gas industries, earth sciences
- Acoustic techniques were used due to high accuracy (ref 1)
- In particular, RUS and Pitch-Catch techniques

¹Migliori, A., and J. D. Maynard (2005), Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. *Review of Scientific Instruments*, *76*(12), Vol.76(12).

Experimental

- Resonant Ultrasound Spectroscopy (RUS) is a swept-frequency technique
- Measures resonances of the material
- Uses transducers positioned opposite of each other, generally corner mounted to the sample
- Samples are usually cut to rectangular parallelepipeds or cylinders
- The quality factor (Q) of the material determines how sharp and easily resolvable the resonant frequencies are
- Berea sandstone has a low Q (~200)
- RUS solves an inverse problem using resonant frequencies, mass density, sample dimensions, to determine elastic moduli

```
free moduli are c11, c44
using 14 order polynomials
                                               df/d(moduli)
    0.072590 0.072938
                         0.48 0.00
    0.000000 0.097088
                         0.00 0.00
                         1.63 0.00
    0.099000 0.100617
    0.117573 0.118522
  8 0.117000 0.120212
  9 0.120000 0.122364
 10 0.123540 0.124519
                         0.34 0.00
 32 0.194413 0.194224
                         -0.10 1.00
c11 c22 c33 c23 c13 c12 c44 c55 c66 0.12214 0.12214 0.12214 0.02608 0.02608 0.02608 0.04803 0.04803 0.04803
 0.91191 0.82873 0.68628
 loop# 5 rms error= 0.4430 %, changed by 0.0000000 %
 length of gradient vector= 0.000002 blamb= 0.000000
 eigenvalues
                       eigenvectors
     88.96410
                1.00 0.08
   2149.01643 -0.08 1.00
```

chisquare increased 2% by the following % changes in independent parameters

LANL RPRCOde Ver. 6.0

0.32 -0.07 0.01 0.16

Experimental

- Focus was on temperature dependence of elastic properties of Berea Sandstone
- Waterfall plot → anomalous elastic behavior (i.e. softening with cooling)
- This indicates a complex mechanical phenomenon happens with decreasing temperature in Berea sandstone
- The data have been confirmed with separate experimental techniques (Pitch-Catch)

- After fitting and data analysis, bulk modulus follows the same trend
- Temperature appears to significantly affect the mechanical properties of Berea
- Extracting the bulk modulus is time intensive
- For qualitative analysis, it is better (easier, faster) to investigate resonance shifting

- To confirm the results, we use Pitch-Catch technique
- We measure ToF, path length, to determine elastic constants and bulk modulus
- New samples with different dimensions are used
- 2 sets: One with shear transducers and one with longitudinal
- Both sets confirm previous RUS results

- Comparison of RUS and PC C₁₁ results show good agreement
- Similar qualitative behavior was observed from both types of experiments

- Anomalous behavior believed to be associated with strain-driven slow dynamics (Ref 1-3).
- Investigated hysteresis curves to determine if the anomalous behavior extends to heating as well
- Different behavior (normal) observed for heating
- Repeated cycling shows similar behavior
- Same trend observed in both shear and longitudinal experiments

¹Johnson, P. A., R. A. Guyer, and L. A. Ostrovsky (1999), A nonlinear mesoscopic elastic class of materials, AIP Conf. Proc., 524, 291–294, doi:10.1121/1.427349.

²Ten Cate, J. A., and T. J. Shankland (1996), Slow dynamics in the nonlinear elastic response of Berea sandstone, Geophys. Res. LePC., 23, 3019–3022, doi:10.1029/96GL02884.

³Ulrich, T. J., and T. W. Darling (2001), Observation of anomalous elastic behavior in rock at low temperatures, Geophys. Res. LePC., 28, 2293–2296, doi:10.1029/2000GL012480.

- Equilibration time in both Berea and Buff Berea does not appear to make a difference
- Unlikely to be a long-lasting relaxation mechanism?

- Allowing the sample to relax at the highest temperature after heating has the effect of further separating the heating and cooling curves at low temperatures
- The qualitative behavior remains the same for both curves but they do not close at the lowest temperature
- Waiting significant amounts of time at different temperature steps has the effect of shifting the spectrum rather than changing the underlying behavior
- A small discontinuity can be seen at the highest temperature before the cooling curve is started

Conclusions

- Anomalous elastic behavior was found in Berea sandstone and Buff Berea when cooled from higher temperatures
- This behavior was confirmed with both RUS and PC
- The elastic behavior is normal with heating but abnormal with cooling, creating a hysteresis curve with temperature
- Equilibration time at each temperature step did not seem to be a factor affecting the anomalous behavior, possibly indicating that it is not caused by long term relaxation
- More investigation will be necessary to pinpoint the exact cause of this behavior

